Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.26.22278072

ABSTRACT

Background: Heterologous orally administered adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in individuals who were primed with two-dose CoronaVac (an inactivated SARS-CoV-2 vaccine, by Sinovac) previously, has been reported to be safe and highly immunogenic within 28 days post-boosting. However, antibody persistence and safety up to 6 months of this regimen are not been reported yet. Methods: This is a randomized, open label, single-center trial on safety and immunogenicity of heterologous boost immunization with an orally administered aerosolised Ad5-nCoV vs. homologous boost immunization with CoronaVac after two-dose priming with CoronaVac in Chinese adults aged 18 years and older (NCT05043259). We followed the participants in this trial, including 140 in the low-dose aerosolised Ad5-nCoV group, 139 in the high-dose aerosolised Ad5-nCoV group, and 140 in the CoronaVac group for 6 months. Neutralising antibodies (NAbs) against live wild-type SARS-CoV-2 virus and omicron variant, and receptor-binding domain (RBD)-specific IgG antibodies were detected in serum samples collected at 28 days, 3 months, and 6 months after the booster dose. Serious adverse events (SAEs) were documented till month 6. Results: The low-dose and high-dose heterologous boost immunisation groups had NAb GMTs against live wild-type SARS-CoV-2 of 1937.3 [95% CI 1466.9, 2558.4] and 1350.8 [95% CI 952.6, 1915.3], which were 26.4 folds and 18.4 folds higher than that the CoronaVac group did (73.5 [95%CI 52.3, 103.3]) at 28 days. The low-dose and high-dose heterologous boost immunisation groups had NAb GMTs against live wild-type SARS-CoV-2 of 530.1 (95% CI 412.5, 681.1) and 457.6 (95%CI 349.4, 599.2), which were 26.0 folds and 22.4 folds higher than that the CoronaVac group did (20.4 [95%CI 14.3, 29.1]) at 3 months, respectively. At 6 months, the low-dose and high-dose heterologous booster groups had NAb GMTs against live wild-type SARS-CoV-2 of 312.9 (95%CI 237.7, 411.8) and 251.1 (95%CI 178.2, 354.0), which were 30.1 folds and 24.1 folds higher than the CoronaVac group did (10.4 [95%CI 7.8, 14.0]), respectively. Additionally, the low-dose and high-dose heterologous booster groups had NAb GMTs against live omicron variant of 52.0 (95%CI 37.2, 72.6) and 23.1 (95%CI 15.7, 33.9) at 28 days, 27.9 (95% CI 18.8, 41.3) and 23.3 (95%CI 16.2, 33.3) at 3 months, 16.0 (95%CI 10.9, 23.5) and 12.0 (95%CI 8.5, 16.8) at 6 months, respectively. However, nearly all participants had no detectable NAbs for omicron variant in the CoronaVac group at either 28 days, 3 months, or 6 months. No vaccine-related SAEs were observed. Conclusions: These data suggested that heterologous aerosolised Ad5-nCoV following two-dose CoronaVac priming was safe and persistently more immunogenic than three-dose CoronaVac, although immune responses waned over time.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.03.22275983

ABSTRACT

Importance People over 60 developed less protection after two doses of inactivated COVID-19 vaccine than younger people. Heterologous vaccination might provide greater immunity and protection against variants of concern. Objective To assess the safety and immunogenicity of a heterologous immunization with an adenovirus type 5-vectored vaccine (Convidecia) among elderly who were primed with an inactivated vaccine (CoronaVac) previously. Design An observer-blind, randomized (1:1) trial, conducted from August 26 to November 13, 2021. Setting A single center in Jiangsu Province, China. Participants 299 participants aged 60 years and olderof them 199 primed with two doses of CoronaVac in the past 3-6 months and 100 primed with one dose of CoronaVac in the past 1-2 months. Intervention Convidecia or CoronaVac as boosting dose Main Outcomes and Measures Geometric mean titers (GMTs) of neutralizing antibodies against wild-type SARS-CoV-2, and Delta and Omicron variants 14 days post boosting, and adverse reactions within 28 days. Results In the three-dose regimen cohort (n=199; mean (SD) age, 66.7 (4.2) years; 74 (37.2%) female), 99 and 100 received a third dose of Convidecia (group A) and CoronaVac (group B), respectively. In the two-dose regimen cohort (n=100; mean (SD) age, 70.5 (6.0) years; 49 (49%) female), 50 and 50 received a second dose of Convidecia (group C) and CoronaVac (group D), respectively. GMTs of neutralizing antibodies against wild-type SARS-CoV-2 at day 14 were 286.4 (95% CI: 244.6, 335.2) in group A and 48.2 (95% CI: 39.5, 58.7) in group B, with GMT ratio of 6.2 (95% CI: 4.7, 8.1), and 70.9 (95% CI: 49.5, 101.7) in group C and 9.3 (95% CI: 6.2, 13.9) in group D, with GMT ratio of 7.6 (95% CI: 4.1, 14.1). There was a 6.3-fold (GMTs, 45.9 vs 7.3) and 7.5-fold (32.9 vs 4.4) increase in neutralizing antibodies against Delta and Omicron variants in group A, respectively, compared with group B. However, there was no significant difference between group C and group D. Both heterologous and homologous booster immunizations were safe and well tolerated. Conclusions and Relevance Heterologous prime-boost regimens with CoronaVac and Convidecia induced strong neutralizing antibodies in elderly, which was superior to that induced by the homologous boost, without increasing safety concerns. Trial Registration Clinical Trials.gov NCT04952727


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.24.22271445

ABSTRACT

Background Heterologous boost vaccination has been proposed as an option to elicit stronger and broader, or longer-lasting immunity. We assessed the safety and immunogenicity of heterologous immunization with a recombinant adenovirus type-5-vectored COVID-19 vaccine (Convidecia) and a protein-subunit-based COVID-19 vaccine (ZF2001). Methods and Findings We did a randomized, observer-blinded, placebo-controlled trial in healthy adults previously received one dose of Convidecia. Participants were randomly assigned (2:1) to receive either ZF2001 (vaccine group) or a trivalent inactivated influenza vaccine (TIV) (placebo group) at either 28-day or 56-day intervals. For both regimens, all participants received the 2nd injection with ZF2001 at 4 months after a dose of ZF2001 or TIV, with three-dose schedules of Convidecia/Convidecia/ZF2001 at day 0, day 28 and month 5 (referred to as CV/ZF/ZF (D0-D28-M5)) and CV/ZF/ZF (D0-D56-M6), and two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6). The primary outcome was the geometric mean titer (GMT) of the neutralizing antibodies against live SARS-CoV-2 virus 14 days after each boost vaccination. The safety outcome was 7-day reactogenicity, measured as solicited local or systemic adverse reactions after each vaccination. Between April 7, 2021, and May 6, 2021, 120 participants were enrolled, among whom 60 were randomly assigned to receive ZF2001 (n=40) or TIV (n=20) at a 28-day interval, and 60 were randomly assigned to receive ZF2001 (n=40) or TIV (n=20) at a 56-day interval. 113 (94.2%) participants received the 2nd injection with ZF2001 4 months after a dose of ZF2001 or TIV. A total of 26 participants (21.7%) reported solicited adverse events within 7 days post boost vaccinations, and all the reported adverse reactions were mild . Among participants receiving ZF001 as second dose, the GMTs of neutralizing antibodies increased to 58.4 IU/ml (42.8-79.8) in 0-28 regimen, and to 80.8 IU/ml (53.1-122.9) in 0-56 regimen at 14 days post first boost dose. The GMTs of neutralizing antibodies increased to 334.9 IU/ml (95% CI 230.4, 486.9) in C/Z/Z (D0-D28-M5) regimen, and 441.2 IU/ml (260.8, 746.4) in C/Z/Z (D0-D56-M6) regimen at 14 days after the third dose. Two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6) induced comparable antibody level comparable with that elicited by three-dose schedules, with the GMTs of 282.9 IU/ml (142.5, 561.8) and 293.9 IU/ml (137.6, 627.9), respectively. Study limitations include the absence of vaccine effectiveness in real-world, and current lack of immune persistence data and the neutralizing antibodies to Omicron. Conclusions Heterologous boosting with ZF001 following primary vaccination of Convidecia is safe and more immunogenic than a single dose of Convidecia. These results support flexibility in cooperating viral vectored vaccines and recombinant protein vaccine. Trial Registration ClinicalTrial.gov NCT04833101


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.03.21263062

ABSTRACT

ABSTRACT Background The safety and immunogenicity of heterologous prime-boost COVID-19 vaccine regimens with one shot of a recombinant adenovirus type-5-vectored COVID-19 vaccine Convidecia has not been reported. Methods We conducted a randomized, controlled, observer-blinded trial of heterologous prime-boost immunization with CoronaVac and Convidecia in healthy adults 18-59 years of age. Eligible participants who were primed with one or two doses of CoronaVac were randomly assigned at a 1:1 ratio to receive a booster dose of Convidecia or CoronaVac. Participants were masked to the vaccine received but not to the three-dose or two-dose regimen. The occurrences of adverse reactions within 28 days after the vaccination were documented. The geometric mean titers of neutralizing antibodies against live SARS-CoV-2 virus were measured at 14 and 28 days after the booster vaccination. Results Between May 25 and 26, 2021, a total of 300 participants were enrolled. Participants who received a booster shot with a heterologous dose of Convidecia reported increased frequencies of solicited injection-site reactions than did those received a homogeneous dose of CoronaVac, but frequencies of systemic reactions. The adverse reactions were generally mild to moderate. The heterologous immunization with Convidecia induced higher live viral neutralizing antibodies than did the homogeneous immunization with CoronaVac (197.4[167.7, 232.4] vs. 33.6[28.3, 39.8] and 54.4[37. 9, 78.0] vs. 12.8[9.3, 17.5]) at day 14 in the three- and two-dose regimen cohort, respectively. Conclusions The heterologous prime-boost regimen with Convidecia after the priming with CoronaVac was safe and significantly immunogenic than a homogeneous boost with CoronaVac ( ClinicalTrials.gov , number NCT04892459 ).


Subject(s)
COVID-19
5.
Sci Rep ; 11(1): 2418, 2021 01 28.
Article in English | MEDLINE | ID: covidwho-1054060

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is currently a global pandemic, and there are limited laboratory studies targeting pathogen resistance. This study aimed to investigate the effect of selected disinfection products and methods on the inactivation of SARS-CoV-2 in the laboratory. We used quantitative suspension testing to evaluate the effectiveness of the disinfectant/method. Available chlorine of 250 mg/L, 500 mg/L, and 1000 mg/L required 20 min, 5 min, and 0.5 min to inactivate SARS-CoV-2, respectively. A 600-fold dilution of 17% concentration of di-N-decyl dimethyl ammonium bromide (283 mg/L) and the same concentration of di-N-decyl dimethyl ammonium chloride required only 0.5 min to inactivate the virus efficiently. At 30% concentration for 1 min and 40% and above for 0.5 min, ethanol could efficiently inactivate SARS-CoV-2. Heat takes approximately 30 min at 56 °C, 10 min above 70 °C, or 5 min above 90 °C to inactivate the virus. The chlorinated disinfectants, Di-N-decyl dimethyl ammonium bromide/chloride, ethanol, and heat could effectively inactivate SARS-CoV-2 in the laboratory test. The response of SARS-CoV-2 to disinfectants is very similar to that of SARS-CoV.


Subject(s)
Disinfectants/pharmacology , Disinfection/methods , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , COVID-19/prevention & control , COVID-19/virology , Chlorine/chemistry , Chlorine/pharmacology , Disinfectants/chemistry , Ethanol/chemistry , Ethanol/pharmacology , Humans , Pandemics/prevention & control , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.03.074914

ABSTRACT

Neutralizing antibody is one of the most effective interventions for acute pathogenic infection. Currently, over three million people have been identified for SARS-CoV-2 infection but SARS-CoV-2-specific vaccines and neutralizing antibodies are still lacking. SARS-CoV-2 infects host cells by interacting with angiotensin converting enzyme-2 (ACE2) via the S1 receptor-binding domain (RBD) of its surface spike glycoprotein. Therefore, blocking the interaction of SARS-CoV-2-RBD and ACE2 by antibody would cause a directly neutralizing effect against virus. In the current study, we selected the ACE2 interface of SARS-CoV-2-RBD as the targeting epitope for neutralizing antibody screening. We performed site-directed screening by phage display and finally obtained one IgG antibody (4A3) and several domain antibodies. Among them, 4A3 and three domain antibodies (4A12, 4D5, and 4A10) were identified to act as neutralizing antibodies due to their capabilities to block the interaction between SARS-CoV-2-RBD and ACE2-positive cells. The domain antibody 4A12 was predicted to have the best accessibility to all three ACE2-interfaces on the spike homotrimer. Pseudovirus and authentic SARS-CoV-2 neutralization assays showed that all four antibodies could potently protect host cells from virus infection. Overall, we isolated multiple formats of SARS-CoV-2-neutralizing antibodies via site-directed antibody screening, which could be promising candidate drugs for the prevention and treatment of COVID-19.


Subject(s)
Acute Disease , Severe Acute Respiratory Syndrome , Tumor Virus Infections , COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.29.014183

ABSTRACT

The beginning of 2020 brought us information about the novel coronavirus emerging in China. Rapid research resulted in the characterization of the pathogen, which appeared to be a member of the SARS-like cluster, commonly seen in bats. Despite the global and local efforts, the virus escaped the healthcare measures and rapidly spread in China and later globally, officially causing a pandemic and global crisis in March 2020. At present, different scenarios are being written to contain the virus, but the development of novel anticoronavirals for all highly pathogenic coronaviruses remains the major challenge. Here, we describe the antiviral activity of previously developed by us HTCC compound (N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride), which may be used as potential inhibitor of currently circulating highly pathogenic coronaviruses - SARS-CoV-2 and MERS-CoV.

8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.11.986836

ABSTRACT

The global spread of SARS-CoV-2 requires an urgent need to find effective therapeutics for the treatment of COVID-19. We developed a data-driven drug repositioning framework, which applies both machine learning and statistical analysis approaches to systematically integrate and mine large-scale knowledge graph, literature and transcriptome data to discover the potential drug candidates against SARS-CoV-2. The retrospective study using the past SARS-CoV and MERS-CoV data demonstrated that our machine learning based method can successfully predict effective drug candidates against a specific coronavirus. Our in silico screening followed by wet-lab validation indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2 replication without obvious cytopathic effect. In addition, we showed that CVL218 is able to suppress the CpG-induced IL-6 production in peripheral blood mononuclear cells, suggesting that it may also have anti-inflammatory effect that is highly relevant to the prevention immunopathology induced by SARS-CoV-2 infection. Further pharmacokinetic and toxicokinetic evaluation in rats and monkeys showed a high concentration of CVL218 in lung and observed no apparent signs of toxicity, indicating the appealing potential of this drug for the treatment of the pneumonia caused by SARS-CoV-2 infection. Moreover, molecular docking simulation suggested that CVL218 may bind to the N-terminal domain of nucleocapsid (N) protein of SARS-CoV-2, providing a possible model to explain its antiviral action. We also proposed several possible mechanisms to explain the antiviral activities of PARP1 inhibitors against SARS-CoV-2, based on the data present in this study and previous evidences reported in the literature. In summary, the PARP1 inhibitor CVL218 discovered by our data-driven drug repositioning framework can serve as a potential therapeutic agent for the treatment of COVID-19.


Subject(s)
COVID-19 , Pneumonia , Drug-Related Side Effects and Adverse Reactions
SELECTION OF CITATIONS
SEARCH DETAIL